

AI, ChatGPT, and Machine Learning in Healthcare and Cybersecurity: Insights from Cloud Analytics, Graph Neural Networks, and Intelligent Systems

Ghaith Alomari^{1*}

¹Chicago state university, USA

¹galomari@csu.edu

Abstract

This review examines the role of Artificial Intelligence (AI), ChatGPT, Machine Learning (ML), and cybersecurity in the contemporary healthcare systems. Graph Neural Networks (GNN) or cloud-based analytics, which are AI-based models, improve disease detection, predictive diagnostics, and personalized treatment. ChatGPT assists with clinical decision-making, interaction with patients, and interpretation of data by means of natural language processing. At the same time, intrusion detection and searchable encryption security systems based on graphs protect confidential medical information. Combining these technologies, it becomes possible to have intelligent, secure, and adaptable healthcare ecosystems. The review identifies the developments in the present, ethical concerns, and future perspectives on the realization of trustworthy, data-driven, and cyber-resilient healthcare innovations in the quest to enhance clinical efficiency and patient safety.

Key words

AI, ChatGPT, Machine Learning, Healthcare, Cybersecurity, Cloud Analytics, Graph Neural Networks, Predictive Diagnostics, Data Encryption

Introduction

Modern healthcare and cybersecurity have been reimagined in the convergence of artificial intelligence (AI), conversations models supported by ChatGPT, and machine learning (ML). With the digitization and cloud reliance of medical systems, the need to have smart, adaptive, and safe computational frameworks has increased by an order of magnitude [1]. AI currently is transformative in diagnostics, patient care, and medical research, and at the same time, it is

presented as innovative solutions to secure sensitive healthcare data against the changing cyber threats [2].

AI and ML models have proven to be unprecedented in early disease detection, risk stratification, as well as predictive analytics in the healthcare sector. The recent developments, including cloud-deployed graph neural networks (GNNs), have made it possible to map the development of coronary artery disease precisely, providing a clinician with more insights into patient-specific tendencies [3]. Likewise, artificial intelligence-based systems to detect osteosarcoma have boosted the ability of diagnosis of uncommon cancer types, which enables timely treatment and better results. The combination of smart wearables and analytics engine (cloud-based) also makes AI more all-encompassing, aiding in real-time tracking and delivering personalized care [4].

At the same time, the emergence of the large language models (LLMs) such as ChatGPT has led to the appearance of new opportunities in communication with patients, medical education, and clinical decision support. ChatGPT may help clinicians to quickly retrieve information, automate report creation and may assist in communicating with patients in an approachable and understanding way. The trends show an increasing importance of generative AI in streamlining healthcare, making it transparent and patient-oriented [5].

Nevertheless, eHealth transformation presents significant cybersecurity and data protection problems. The information regarding patients kept in the clouds is becoming more prone to hacking and other illegal activities. Recent studies focus on the recent security architecture like the use of graph-based intrusion detection system, contrastive learning system and searchable encryption methods in order to protect healthcare data [6]. Such cybersecurity systems with AI features provide confidentiality, integrity, and availability of essential information, thus creating trust in digital health ecosystems.

In this review, the relationship between AI, ChatGPT, and ML as applied to healthcare innovation and enhanced cybersecurity infrastructures are examined. Offering a combination of information about cloud analytics, disease modeling with GNN, and intelligent encryption techniques, the article brings up the dual nature of AI as both the driver of clinical change and the protector of digital privacy in the era of intelligent healthcare systems [7].

Healthcare Artificial Intelligence

Artificial intelligence (AI) has become a revolutionary phenomenon in healthcare, making it possible to make data-driven decisions, diagnose patients with accuracy, and manage them individually. The use of AI in clinical processes has also contributed greatly to medical imaging, disease prediction and treatment planning [8]. Healthcare systems can process complex biological data and can identify patterns that could not be discovered previously, and they can assist clinicians by providing insights in real-time by using deep learning and graph-based algorithms [9].

AI has been a successful tool in the detection of disease at its early stages, whereby early treatment can have a significant effect on the final outcome. Cloud-deployed graph neural networks (GNNs) have been applied in cardiovascular medicine in mapping coronary artery disease progression and, consequently, provide an opportunity to visualize vessel structures and dynamics of disease in detail [10]. These GNN-based systems combine the imaging, genetic, and clinical data, and provide a combination of overall patient risk profiles. Oncology has also experienced incredible promise with AI in the detection and risk-sorting of rare tumors including osteosarcoma. Early detection of malignant patterns can be achieved through machine learning models that have been trained using histopathological and genomic data, which a human eye cannot recognize promptly and accurately [11].

The patient monitoring and preventive care is being redefined by intelligent wearable devices powered by AI and connected with secure cloud infrastructures. These are gadgets that keep recording physiological measurements, including heart rate, blood pressure, and oxygen levels and are analyzed by cloud-based ML algorithms. This feedback loop is used in real time to help identify abnormalities, forecast adverse events and streamline treatment course. Cloud platforms also encourage the big-scale health data integration that allows researchers to train predictive models on diverse datasets and keep it scalable and accessible [12].

The combination of AI and cloud analytics creates a culture of lifelong learning and change. The performance of the algorithms is refined with every input of data and this enables the healthcare systems to become dynamic by responding to the needs of patients. Nevertheless, this innovation should be accompanied by robust data governance and cybersecurity systems that will guarantee the integrity and confidentiality of sensitive medical data [13]. The field of AI in healthcare is no longer in its potential phase but already in practice, which benefits both clinicians and patients. Intelligent diagnostics all the way to predictive monitoring, AI is transforming the medical world into a much smarter, quicker and responsive one, which sets the stage of precision and preventive medicine with the help of safe and smart infrastructures [14].

Application of ChatGPT and Conversational AI in Clinical Practice

ChatGPT, and other large language models (LLM) based on conversational artificial intelligence (AI) are also starting to transform the interaction of healthcare providers and patients with computer-based systems. ChatGPT is a powerful communication, educational, and decision support tool, constructed using transformer-based architectures and capable of understanding, generating, and contextualizing human-like responses, which is applicable to all clinical settings. Its natural language processing (NLP) features allow meaningful communication and bridging the gap between the technical medical data and the understanding of the patient [15].

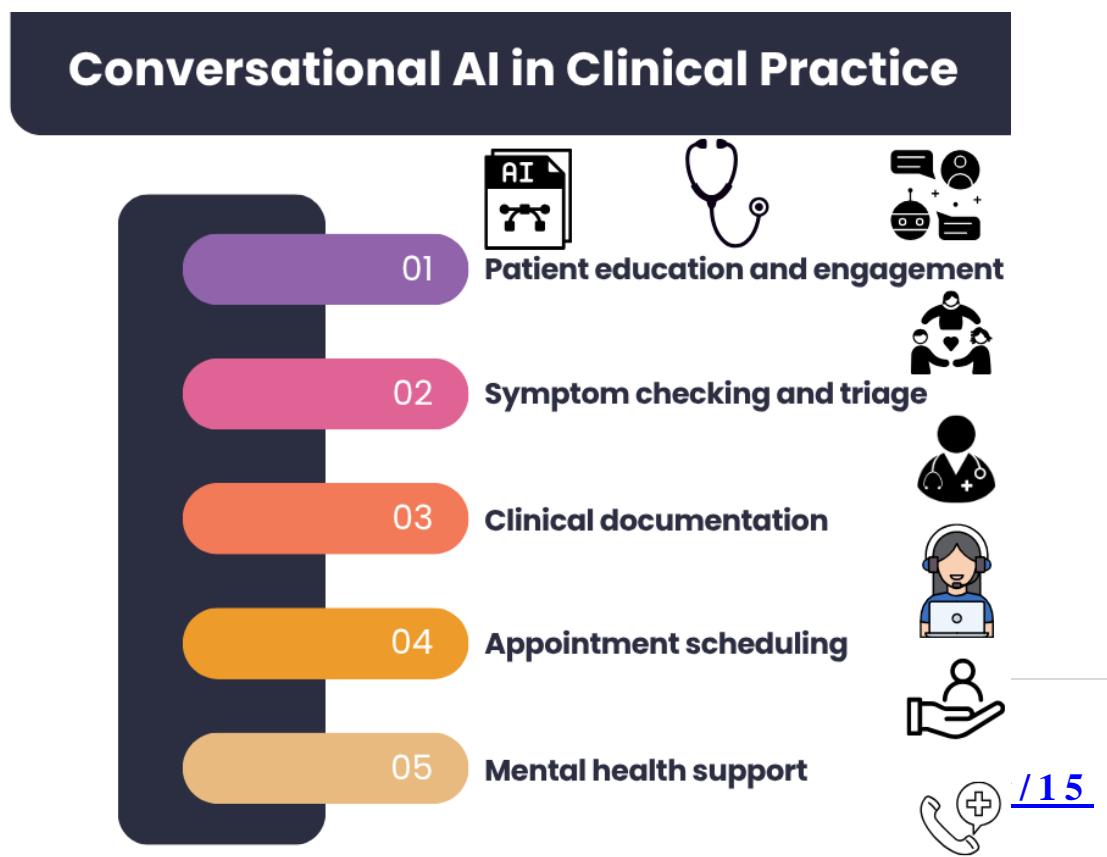


Figure: 1 showing conversational AI in clinical practice

Patient engagement and self-management are being changed by the chatbots and virtual assistants based on ChatGPT in healthcare. The systems offer 24/7 assistance on routine medical questions, symptom evaluation, consultations, and drug reminders. In comparison to the conventional automated systems, the situational knowledge of ChatGPT enables it to respond to the needs of an individual patient and increase satisfaction and trust [16]. ChatGPT-driven applications can be utilized in remote or resource-constrained environments to provide pre-triage, referred to as guidance to the correct level of care, and to offload clinical workload. Additionally, they enhance health literacy by reducing complicated medical language to an understandable and colloquial language [17].

In addition to the interaction with patients, ChatGPT is becoming a useful aspect of clinical decision-making. When incorporated into the hospital information systems, it can help clinicians through fast synthesis of research, summarizing of patient records and producing clinical documentation [18]. ChatGPT is capable of helping with diagnostic reasoning and can be used to correlate symptoms, lab results, and history and recommend potential conditions or treatment courses. It can be used together with machine learning (ML) algorithms, which promote evidence-based practice because they constantly learn based on medical databases and clinical outcomes [19].

Nonetheless, there are data accuracy, ethical compliance, and security issues associated with the deployment of ChatGPT in healthcare. As the responses produced by the LLMs are based on the training data, there is a risk of spreading prejudices or inaccuracies unless they are validated correctly. Therefore, the connection with confirmed medical data and the process of monitoring the data under the management of medical workers is still mandatory [20]. Moreover, data security of patients in AI communication is of utmost importance and requires the maintenance of proper

communication rules and adherence to the healthcare privacy laws of HIPAA and GDPR. ChatGPT and conversational AI is a major development in the field of human-computer interaction in healthcare. These technologies will improve the accessibility, efficiency and customization of patient care by integrating linguistic intelligence with clinical data systems, which is a significant advancement towards an intelligent, responsive and human-friendly healthcare ecosystem [21].

Graph Neural Networks and Machine Learning in Healthcare.

Graph Neural Networks (GNNs) and Machine Learning (ML) have become key to the healthcare analytics modernization. Their multi-dimensional aspects and process of complex data processing allow better clinical insights and precision medicine. ML algorithms are being applied to process imaging data, genomics, and electronic health records (EHRs) and GNNs can be applied to extend this functionality and represent more complex relationships between biological, clinical, and social health factors [22].

Conventional deep learning methods have the tendency to consider medical data in isolation. Conversely, GNNs represent data in the form of nodes in a network where relationship is important to the study of disease behavior. In heart studies, GNNs deployed in clouds have been demonstrated to be very accurate when it comes to mapping coronary artery disease progression. These models are able to forecast the development of disease in the heart of imaging data and can select high-risk patients earlier than traditional diagnostic methods by learning spatial and temporal dependencies in imaging data [23]. Likewise, in cancer biology, GNNs can be applied to tumor microenvironment and gene interaction networks, and can predict the progression of cancer and response to treatment. Instead of basic classification, this graph-based model is a step in the direction of patient-centered and data-driven care through the creation of a model of holistic patient representation [24].

ML has been found to be vital in predictive modeling and optimization of treatment. Learning algorithms under supervision and without supervision use large quantities of clinical information to discover early indicators of illness, evaluate interventions in treatment, and tailor interventions to individual patients [25]. As an illustration, ML-based models have been found to be successful in identifying osteosarcoma and other uncommon malignancies after learning fine-tuning aspects

of radiological and pathological data. These tools do not only help the clinicians in the process of making informed decisions but also minimize the delays in making diagnostic errors [26].

ML when combined with cloud analytics allows the scalability of processing and real-time support of decisions. Cloud systems combine heterogeneous data types such as imaging and wearable sensor data enabling ML systems to continually enhance by engaging in federated learning and adaptive feedback. Moreover, the combination of ML and GNN can be more interpretable, with graph structures being able to visualize the impact of clinical variables on patient outcomes [27]. ML and GNNs are revolutionizing the shift away of healthcare to being reactive to proactive. They enable clinicians to make predictions, prevent and individualize the treatment plans through converting data into anything meaningful. These smart systems have the potential to provide safer and more efficient and patient-centered medical care when they are supported by safe and ethical deployment practices [28].

Artificially Intelligent Healthcare Cybersecurity.

With the advent of artificial intelligence (AI) and machine learning (ML) as components of healthcare systems, cybersecurity has become a burning issue. The growing use of the cloud platforms, smart wearables, and networked devices puts sensitive patient information at risk of breach and cyber-attacks. In order to guarantee the trust of AI-driven healthcare ecosystems, data integrity, confidentiality, system reliability must be ensured. Progress in cybersecurity models has now used AI itself to identify, stop and act on threats in real time [29].

The contemporary healthcare systems rely on cloud computing to store data, analytics, and collaborate. Nevertheless, cloud infrastructures are susceptible to intrusion attack and data tampering. Graph-based feature transformer AI-based contrastive learning-based security systems have demonstrated great potential in intrusion detection [30]. The models are able to learn complicated patterns of network traffic and distinguish between usual and malicious activities with a high degree of accuracy. As an example, the recent frameworks employ graph structures to model network behavior so that the identification of subtle attack vectors may be possible that may go unnoticed by traditional rule-based systems. This will strengthen the ability to withstand emerging

cyber threat requirements and provide ongoing security of healthcare information stored in cloud-based systems [31].

Ethical deployment of AI revolves around the protection of the patient information. Searchable encrypted medical data can be accessed by authorized users, and privacy is not put at risk, making them compliant with such standards as HIPAA and GDPR. These approaches reduce risks related to centralized storage and data exchange with federated learning that allows training models based on decentralized sources of data [32]. The privacy preserving ML algorithms also mitigate against unauthorized inference attack on the privacy of sensitive health information, thereby keeping the information safe during the entire lifecycle [33].

As more and more people embrace the use of AI and clouds, it is of paramount importance to uphold ethical governance. Well-developed cyber protection should be legal and clear in data processing and responsibility. To avoid abuses or unwanted bias in automated systems, institutions should conduct periodic audits, provide explainable artificial intelligence (XAI), and human supervision [34]. AI-driven healthcare is based on cybersecurity. Through the combination of smart intrusion detection, encrypted data handling, and moral control, healthcare organizations can not only be innovative but also safe enough to create a digital ecosystem where technology would improve care without breaching trust [35].

Healthcare AI and Cybersecurity Frameworks Integration

The intersection of artificial intelligence (AI) and cybersecurity is one of the crucial steps in the development of the healthcare systems of the contemporary world. With the growing number of healthcare organizations that are now turning to digital technologies (including AI-assisted diagnostics and cloud-based medical records among others), the necessity to integrate the frameworks that integrate smart analytics with effective data protection has become critical. Such integration will make healthcare innovations effective and secure, which will promote trust between patients, clinicians, and institutions [36].

Distribution of Cybersecurity Frameworks Used in Integrated Security Programs

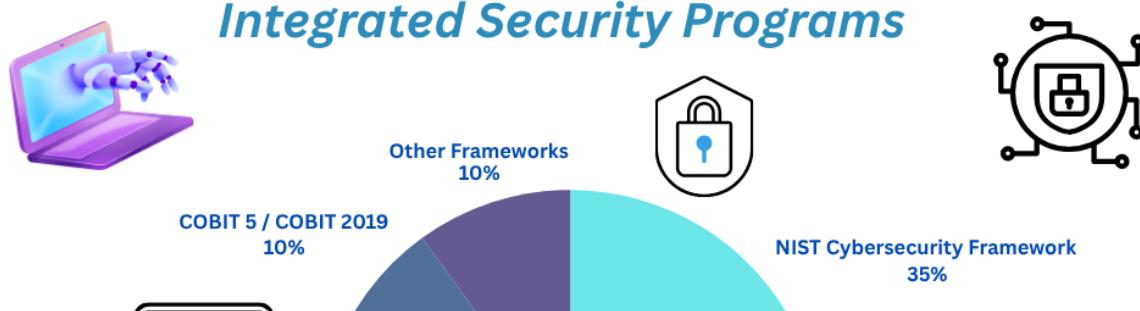


Figure: 2 showing distribution of cybersecurity frameworks used in integrated security programs

Healthcare applications that are run by AIs produce large volumes of sensitive data in imaging systems, wearable devices, and electronic health records (EHRs). Combined with machine learning (ML) algorithms and cloud systems, such systems can reveal previously unavailable clinical insights. But when there is no proper security in the cyber space, then these data pipelines can be a target of cyber-attacks [37]. By implementing cybersecurity throughout the cycle of AI implementation, including data collection and model training and inference, one will establish a robust digital ecosystem that ensures that patient confidentiality is not compromised and operational velocity is maintained [38].

State-of-the-art models have switched to a graph neural network (GNNs) and transformer-based models to detect threats and monitor systems, in addition to clinical analysis. As an example, the graph-based architectures designed to simulate the disease evolution can be modified to detect network anomalies to create a system that serves both healthcare and security purposes. This single method enables monitoring data integrity and system health continuously as well as optimizes the performance of AI. Additionally, both usability and privacy are maintained by using encryption,

including searchable encryption, in which only authorized users can access their data in the cloud [39].

Integration goes to governance and compliance. The healthcare facilities are required to match AI and cybersecurity usage with regulatory frameworks, including HIPAA, GDPR, and ISO 27001. Implementing the principles of explainable AI (XAI) will provide the transparency in automated decision-making processes such that the healthcare professional can interpret and confirm AI advice without affecting the confidentiality of data [40]. Cross-functional partnerships between clinicians and data scientists, as well as cybersecurity specialists, are becoming necessary to ensure accountability and trust in the work of ethical oversight committees. The combination of AI and cybersecurity systems will make healthcare a safe, intelligent, and responsive environment. It allows foreseeing health care, streamlined functioning, and secure information sharing- between advances in technology and social ethic. The combination of smart analytics and safe computing opens the era of the new generation of the healthcare system not only smart and data-driven but trustworthy in its nature [41].

Difficulties and Future Projections

In as much as there has been an incredible development in the integration of artificial intelligence (AI), ChatGPT, machine learning (ML), and cybersecurity in the healthcare sector, there are a number of issues. These barriers are attributed to technical constraints, ethical factors, regulatory complexities and changing nature of healthcare as well as cyber threats. These concerns must be overcome to make intelligent healthcare systems efficient, transparent and safe. Among the most important issues is the data quality and interoperability. Healthcare data is commonly disjointed in a variety of systems and are usually stored in varying formats and incomplete information or biased data [42]. This kind of inconsistency impedes the work of AI and ML models resulting in unreliable or false predictions. Medical data formatting and facilitating safe data-sharing systems

is essential towards developing powerful, generalizable models that can facilitate clinical decision-making [43].

Model interpretability and trust is another important challenge. Deep learning and large language models, such as ChatGPT, are a black box, and not much information is provided on how a decision is reached. Explainable AI (XAI) is necessary in healthcare, where patient safety directly depends on the outcomes. Future studies ought to be keen on creating open algorithms that give justifiable reasons in the recommendations as well as being accurate and efficient. The threat of cybersecurity is constantly shifting in line with the development of AI [44]. With additional healthcare systems embracing cloud infrastructure and interconnected gadgets, the attack field increases. There is a growing threat of adversarial attacks, data poisoning, and ransom ware. The inclusion of AI-based intrusion detection systems and privacy-protecting solutions, including federated learning and homomorphic encryption, will play a significant role in protecting patient information without affecting the performance of the systems [45].

There is another layer of complexity of compliance with ethics and regulations. To assure the compliance with such standards as HIPAA and GDPR and handle the implementation of AI all over the world, it is necessary to monitor it on a regular basis. The ability to juggle innovation and ethical accountability, fairness, and inclusivity is another of the major future directions [46]. Cooperation of clinicians, data scientists and policymakers will play an essential role in establishing the rules of safe and ethical use of AI. In the future, AI in healthcare will be ensuring safety, explainability, and human-centered systems [47]. The next decade will be characterized by the integration of block chain to exchange data transparently, development of GNNs to develop personalized medicine, and development of ChatGPT to provide real-time clinical assistance. With AI and cybersecurity dominating the medical ecosystem, a smarter, fairer, and more resilient healthcare environment can be established by fixing the existing adversities and adopting new technologies in responsible ways [48].

Conclusion

Artificial intelligence (AI), ChatGPT, machine learning (ML) and cybersecurity have introduced a paradigm shift in the sphere of contemporary healthcare. These technologies combined are

transforming the field of diagnostics, patient care, and data management and creating a new paradigm of intelligent, secure, and personalized medicine. Cloud-based analytics and graph neural networks (GNNs) in disease modeling, conversational AI, and encrypted data systems are all the synergy of the innovations that will offer a breakthrough towards precision and trust-based healthcare.

AI has become one of the pillars in enhancing clinical effectiveness and accuracy in diagnostic processes. GNNs deployed on clouds have facilitated comprehensive mapping of the process of coronary artery disease, whereby the ML algorithms have been utilized in detecting more complex conditions early, like osteosarcoma. The connective analytics and smart wearables have also increased the scope of healthcare as they enable real time and continuous monitoring of patients outside the clinical environment. These applications not only enhance early intervention but also add to the personalized approach to treatment in accordance with dynamic patient data.

ChatGPT or other large language models (LLMs) have provided a human aspect to this technology ecosystem. ChatGPT supports communication between patients and medical experts by enabling natural language interaction, which closes communication gaps among them. Its implementation in virtual assistants, in medical records, and in the decision support proves that conversational AI can make the process more efficient and more accessible. Nevertheless, these systems should be introduced carefully- with accuracy, in a way that does not violate ethical standards and there is protection of the data to avoid misinformation and maintain clinical reliability.

There are also exigent cybersecurity issues that come with the introduction of AI into the healthcare system. With cloud resources holding the sensitive data of patients, and AI models being dependent on enormous streams of data, the chances of cyber-attacks increase. Intrusion detection systems in the form of graph based systems and searchable encryption techniques are critical in protecting healthcare systems against the changing digital attacks. Data integrity and trust in digital health ecosystems can be preserved by integrating cybersecurity into AI processes, which organizations are currently encouraged to follow.

The intersection of AI and cybersecurity models can be used to facilitate a two-fold strategy- where not only do intelligent systems provide clinical insights, but also defend their working conditions.

Models and transformer architectures that are based on graphs can be utilized to detect network anomalies or security breaches at the same time that they are being used to analyze diseases. This integration forms a self-educating, flexible healthcare ecosystem which is constantly upgraded alongside medical and cybersecurity requirements.

Even with these developments, there are still problems. We need to solve the problem of data fragmentation, interoperability, model understandability, and compliance with regulations to guarantee the effective and safe implementation of AI technologies. The lack of transparency of the deep learning or the LLMs, such as ChatGPT, brings up the question of explainability and accountability, particularly in life-critical decision-making. The next step should be explainable AI (XAI) in order to establish trust between clinicians and patients. Also, universal principles on how AI can be used ethically and govern data need to be established so as to facilitate fairness, transparency, and inclusiveness in medical systems worldwide.

In the future, the smart healthcare is in the process of balancing innovation, ethics and security. Federated learning, homomorphic encryption, and blockchain technologies have the potential to enhance the privacy of data and interoperability and facilitate collaboration on a global scale without losing the confidentiality. On the same note, AI-enhanced cybersecurity can only advance in a way that it detects threats and with a higher degree of accuracy. Simultaneously, ChatGPT and other conversational models will be more specialized and contextual in their assistance to clinicians in diagnosing patients, educating them, and conducting research in a more reliable manner.

AI, ChatGPT, ML, and cybersecurity have never existed in isolation as they are all an integrated part of a single digital health system. Collectively, they help to create predictive instead of reactive, personalized instead of generalized, and secure instead of vulnerable healthcare systems. The road to completely intelligent and cyber secure healthcare is a long one that is still in progress, but the basis is well laid. The future of healthcare is intelligent systems that heal and protect, with an interdisciplinary approach, transparent governance, and ethically innovative technologies continuing to collaborate with humanity in the future to create balance in the well-being of all people.

References

- [1]. Neoaz N, Amin MH. Advanced AI Paradigms in Mental Health: An In-depth Exploration of Detection, Therapy, and Computational Efficacy. *Global Insights in Artificial Intelligence and Computing*. 2025 Jan 25;1(1):40-6.
- [2]. Bacha A. Healing with Algorithms: The Future of AI-Driven Diagnostics and Treatment. *American Journal of Artificial Intelligence and Computing*. 2025 May 9;1(1):103-18.
- [3]. Govindarajan V. A Novel System for Managing Encrypted Data Using Searchable Encryption Techniques. *International Journal of Advanced Computer Science & Applications*. 2025 Mar 1;16(3).
- [4]. Bacha A, Shah HH, Abid N. The Role of Artificial Intelligence in Early Disease Detection: Current Applications and Future Prospects. *Global Journal of Emerging AI and Computing*. 2025 Jan 20;1(1):1-4.
- [5]. Khan M, Sherani AM, Bacha A. The Neurological Nexus: Exploring EEG, Facial Recognition, and Graph Algorithms in Mental Health AI. *Global Insights in Artificial Intelligence and Computing*. 2025 Jan 26;1(1):47-56.
- [6]. Bacha A. Unveiling Frontiers: Hybrid Algorithmic Frameworks for AI-Driven Mental Health Interventions. *AlgoVista: Journal of AI and Computer Science*. 2025;2(1):1-8.
- [7]. Abbasi N, Nizamullah FN, Zeb S, Fahad M, Qayyum MU. Machine learning models for predicting susceptibility to infectious diseases based on microbiome profiles. *Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online)*. 2024 Aug 25; 3(4):35-47.
- [8]. Govindarajan V, Devi H, Kumar P. Revolutionizing Cardiac Care: A Systematic Review of Intelligent Wearables And Cloud-Based Analytics.
- [9]. Neoaz N, Amin MH. Advanced AI Paradigms in Mental Health: An In-depth Exploration of Detection, Therapy, and Computational Efficacy. *Global Insights in Artificial Intelligence and Computing*. 2025 Jan 25;1(1):40-6.
- [10]. Kabeer MM. Leveraging AI for Process Optimization: The Future of Quality Assurance in Lean Six Sigma. *American Journal of Artificial Intelligence and Computing*. 2025 May 7;1(1):87-103.

- [11]. Nizamullah F, Fahad M, Abbasi N, Qayyum MU, Zeb S. Ethical and legal challenges in AI-driven healthcare: patient privacy, data security, legal framework, and compliance. *Int. J. Innov. Res. Sci. Eng. Technol.* 2024;13:15216-23.
- [12]. Javeedullah M. Interoperability Solutions for Efficient Health Informatics Systems. *Global Trends in Science and Technology.* 2025 Apr 22;1(1):176-94.
- [13]. Singh A. A Survey of Foundational Concepts and Emerging Frontiers in Computer Science. *Global Research Repo.* 2025 Sep 9;1(2):279-309.
- [14]. Zeb S, Lodhi SK. AI for predictive maintenance: Reducing downtime and enhancing efficiency. *Enrichment: Journal of Multidisciplinary Research and Development.* 2025 May 13;3(1):135-50.
- [15]. Kabeer MM. Artificial Intelligence in Modern Manufacturing: Opportunities and Barriers. *Global Trends in Science and Technology.* 2025 Jul 16;1(3):83-100.
- [16]. Govindarajan V. Early Detection and Risk Stratification of Osteosarcoma, A Rare Tumor, Using Artificial Intelligence: A Systematic Review. *Advances in Artificial Intelligence and Machine Learning.* 2025; 5 (2): 221 [Internet]. Sarcoma; 2024
- [17]. Zeb S, Lodhi SK. AI and Cybersecurity in Smart Manufacturing: Protecting Industrial Systems. *American Journal of Artificial Intelligence and Computing.* 2025 Apr 7;1(1):1-23.
- [18]. Singh A. Exploring Innovations across Computer Science Disciplines. *Global Research Repo.* 2025 Sep 9; 1(2):330-61.
- [19]. Javeedullah M. Integrating Health Informatics Into Modern Healthcare Systems: A Comprehensive Review. *Global Journal of Universal Studies.*;2(1):1-21.
- [20]. Govindarajan V, Muzamal JH. Advanced cloud intrusion detection framework using graph based features transformers and contrastive learning. *Scientific Reports.* 2025 Jul 1;15(1):20511.
- [21]. Javeedullah M. Role of Health Informatics in Public Health Surveillance and Response. *American Journal of Artificial Intelligence and Computing.* 2025 Apr 21;1(1):70-86.

[22]. Neoaz N, Shah HH, Zainab H. AI in Personalized Medicine: Transforming Treatment Plans through Precision Health. *Global Journal of Emerging AI and Computing*. 2025 Jan 23;1(1):34-50.

[23]. Javeedullah M. Using Health Informatics to Streamline Healthcare Operations. *American Journal of Artificial Intelligence and Computing*. 2025 Apr 7;1(1):24-44.

[24]. Shihab SR, Sultana N, Samad A. Revisiting the use of ChatGPT in business and educational fields: Possibilities and challenges. *BULLET: Jurnal Multidisiplin Ilmu*. 2023;2(3):534-45.

[25]. Singh A. Evolution of Computer Science: A Historical and Technological Overview. *American Journal of Artificial Intelligence and Computing*. 2025 Jul 23;1(2):62-86.

[26]. Kabeer MM. Utilizing Machine Learning for Continuous Process Improvement in Lean Six Sigma. *Global Trends in Science and Technology*. 2025 May 7;1(2):49-63.

[27]. Javeedullah M. Future of Health Informatics: Bridging Technology and Healthcare. *Global Trends in Science and Technology*. 2025 Apr 4;1(1):143-59.

[28]. Abid N, Neoaz N, Amin MH. AI-Driven Approaches to Overcoming Tumor Heterogeneity in Breast Cancer: Modelling Resistance and Therapy Outcomes. *Global Journal of Universal Studies*.;1(2):591050.

[29]. Abbasi N, Nizamullah FN, Zeb S. Ai in healthcare: Using cutting-edge technologies to revolutionize vaccine development and distribution. *JURIHUM: Jurnal Inovasi dan Humaniora*. 2023 Jun 14;1(1):17-29.

[30]. Govindarajan V. Early Detection and Risk Stratification of Osteosarcoma, A Rare Tumor, Using Artificial Intelligence: A Systematic Review. *Advances in Artificial Intelligence and Machine Learning*. 2025; 5 (2): 221 [Internet]. Sarcoma; 2024

[31]. Abbasi N, Nizamullah FN, Zeb S. AI in healthcare: integrating advanced technologies with traditional practices for enhanced patient care. *BULLET: Jurnal Multidisiplin Ilmu*. 2023 Jun 13;2(3):546-6.

[32]. Lodhi SK, Zeb S. Ai-Driven Robotics and Automation: The Evolution of Human-Machine Collaboration. *Journal of World Science*. 2025 May 13;4(4):422-37.

- [33]. Shah HH, Bacha A. Leveraging AI and Machine Learning to Predict and Prevent Sudden Cardiac Arrest in High-Risk Populations. *Global Journal of Universal Studies.*;1(2):87-107.
- [34]. Neoaz N. Big Data Analytics Study the implications of big data analytics on decision-making processes in organizations. Author Nahid Neoaz. 2025 Jan 20.
- [35]. Govindarajan V. Early Detection and Risk Stratification of Osteosarcoma, A Rare Tumor, Using Artificial Intelligence: A Systematic Review. *Advances in Artificial Intelligence and Machine Learning.* 2025; 5 (2): 221 [Internet]. Sarcoma; 2024
- [36]. Javeedullah M. Security and Privacy in Health Informatics: Safeguarding Patient Data in A Digital World. *AlgoVista: Journal of AI and Computer Science.*;2(3):52-68.
- [37]. Neoaz N. Human Factors in Information Assurance: A Review of Behavioral and Cultural Aspects. *International Journal of Multidisciplinary Sciences and Arts.* 2024;3(4):235-42.
- [38]. Bacha A, Zainab H. AI for Remote Patient Monitoring: Enabling Continuous Healthcare outside the Hospital. *Global Journal of Computer Sciences and Artificial Intelligence.* 2025 Jan 23;1(1):1-6.
- [39]. Singh A. Artificial Intelligence and Its Expanding Role in Computer Science. *American Journal of Artificial Intelligence and Computing.* 2025 Sep 20; 1(2):226-40.
- [40]. Zeb S, Nizamullah FN, Abbasi N, Qayyum MU. Transforming Healthcare: Artificial Intelligence's Place in Contemporary Medicine. *BULLET: Jurnal Multidisiplin Ilmu.* 2024;3(4):592385.
- [41]. Neoaz N, Husnain A. Deciphering the AI Healthcare Evolution: Opportunities, Risks, and the Path Forward. *Global Trends in Science and Technology.* 2025 Mar 30;1(1):121-42.
- [42]. Javeedullah M. Big Data and Health Informatics: Managing Privacy, Accuracy, and Scalability. *Global Trends in Science and Technology.* 2025 Jul 3;1(3):29-47.
- [43]. Neoaz N. Role of Artificial Intelligence in Enhancing Information Assurance. *BULLET: Jurnal Multidisiplin Ilmu.* 2024;3(5):749-58.
- [44]. Samad A, Jamal A. Transformative Applications of ChatGPT: A Comprehensive Review of Its Impact across Industries. *Global Journal of Multidisciplinary Sciences and Arts.* 2024;1(1):26-48.

- [45]. Bacha A, Sherani AM. AI in Predictive Healthcare Analytics: Forecasting Disease Outbreaks and Patient Outcomes. *Global Trends in Science and Technology*. 2025 Jan 24; 1(1):1-4.
- [46]. Govindarajan V, Kumar P, Kumar D, Devi H, Kumar S, Shiwlani A. ROLE OF CLOUD-DEPLOYED GRAPH NEURAL NETWORKS IN MAPPING CORONARY ARTERY DISEASE PROGRESSION: A SYSTEMATIC REVIEW. *Journal of Medical & Health Sciences Review*. 2025 May 30; 2(2).
- [47]. Bacha A, Sherani AM. AI in Predictive Healthcare Analytics: Forecasting Disease Outbreaks and Patient Outcomes. *Global Trends in Science and Technology*. 2025 Jan 24; 1(1):1-4.
- [48]. Neoaz N, Shah HH, Zainab H. AI in Personalized Medicine: Transforming Treatment Plans through Precision Health. *Global Journal of Emerging AI and Computing*. 2025 Jan 23; 1(1):34-50.