

A Review of Secure Cloud-Based Deep Learning and ChatGPT Applications in Healthcare

Mohammad Ali^{1*}

¹Independent Researcher Iraq

¹m.ali.m2000m@gmail.com

Abstract

The development of deep learning, natural language processing, and cloud computing security is changing the face of healthcare using artificial intelligence (AI). In this review, I discuss the intersection between deep learning and ChatGPT in cloud-based healthcare systems, the opportunities, the challenges, and future directions. Deep learning allows making correct diagnoses, predictive analytics, and treatment, and ChatGPT improves the process of patient interaction, clinical records, and medical education. The cloud offers the required infrastructure to support the activation of scalability and teamwork but it poses a challenge of privacy, security and compliance. There is a need to address matters of trust, interpretability and ethical governance. Collectively, the technologies present an avenue to a more secure path of transparent and patient-centered innovation in healthcare.

Keywords: Artificial Intelligence, Deep Learning, ChatGPT, Cloud Computing, Healthcare Security, Explainable AI.

Introduction

AI has been a groundbreaking component in healthcare, and it has transformed how diseases are diagnosed, how they are scheduled to be treated, and how patients are monitored. One of the various AI approaches that has had a huge promise in areas such as medical imaging, pathology, genomics and personalized medicine is deep learning. Being able to analyze large complex quantities of structured and unstructured data allows clinicians to make data-driven decisions more accurately, faster, and structured through deep learning [1]. However, the computational requirements of the models are vast and, often, the nearby hospital resources cannot be extended

to them. This has been a limiting factor that has seen the adoption of cloud computing as a core technology to scale AI applications in the health care industry [2].

The elastic storage and the high-performance and friendly collaborative environment provided by clouds enable researchers and healthcare providers to train and deploy complex AI models without problems. Companies can deploy the cloud to accelerate medical research, implement artificial intelligence-based decision support systems, and ensure patients an access to patient insights in real-time no matter where the company is located. However, there are also some difficulties related to compliance, data privacy, and data security in cloud based systems [3]. The data concerning patients is highly confidential and is subject to the regulations of the legislation such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, and the General Data Protection Regulation (GDPR) in Europe. It has therefore become a major concern to ensure that AI systems stored in clouds are secure, trustworthy and ethically controlled [4].

The opportunities of healthcare apps have grown both with an in-depth learning approach and the introduction of large language models (LLMs), particularly, ChatGPT. ChatGPT has the capability to handle the natural language inquiries, support clinical documentation, provide conversational assistance to patients, and assist medical professionals with a knowledge companion. Compared to the outdated models of deep learning that deal with imaging or signal data, ChatGPT is a paradigm shift in processing and using text-based medical data, such as electronic health records (EHRs), clinical notes, and communication with patients [5]. ChatGPT may be employed as a versatile and cost-effective tool of enhancing healthcare delivery and medical education, particularly when coupled with the implementation of secure cloud models.

Nevertheless, there is a danger associated with both deep learning and ChatGPT-based systems, as they can be used without the appropriate regulations. Such issues as adversarial attacks on the models, data leakage, bias in the results of AI, and misinformation may have severe implications in the clinical field [6]. Thus, AI, cloud computing and cybersecurity are the spheres, which have to be studied thoroughly to offer the opportunity to apply these technologies to healthcare safely and effectively. This is a critical review of secure cloud based deep learning and ChatGPT in healthcare. It indicates the potentialities of such technologies, the security and ethical concerns

that come with such technologies, and the future of coming up with secure, privacy sensitive, and trustworthy AI-based health care systems [7].

Deep Learning in Healthcare

The current healthcare innovation has adopted deep learning as a staple, a subdivision of machine learning that is based on multilayer artificial neural networks. Its capability to automatically extract patterns on large and complex sets of data make it particularly suitable in medical applications where data are often high-dimensional as in medical images, genomic sequences or continuous monitoring signals recorded by wearable devices. In the healthcare industry, deep learning has already shown superiority over traditional approaches, and in some diagnostic tasks, it is not only as accurate as human beings, but even more so [8].

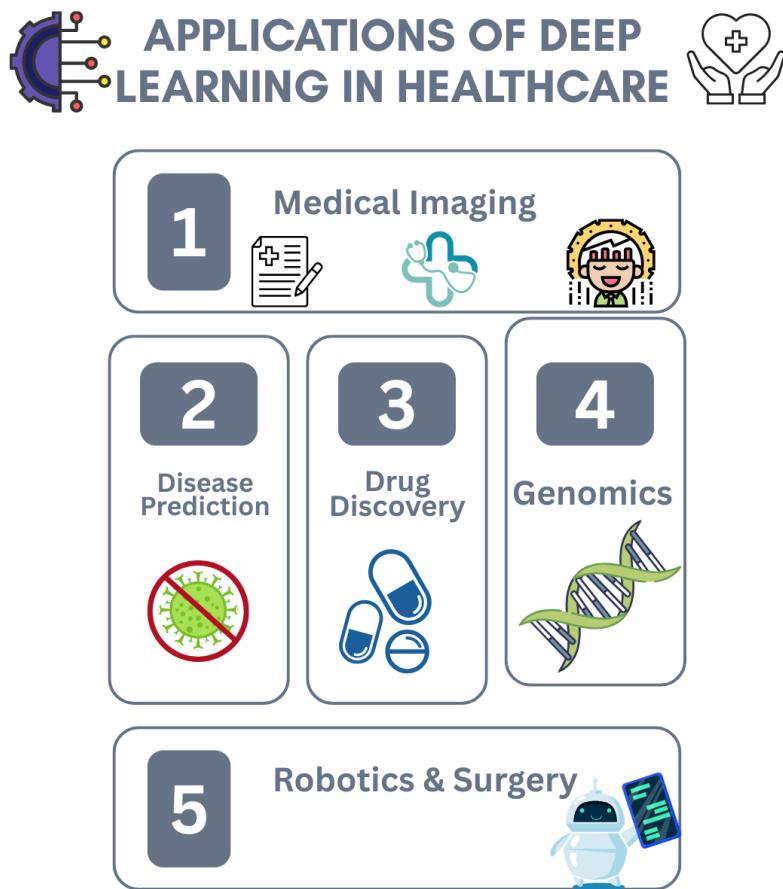


Figure: 1 showing applications of deep learning in healthcare

One of the key applications is medical imaging. X-rays, CT scans, MRI images and histopathology slides have been massively analyzed using CNNs, specifically. High sensitivity and specificity the models are able to assist radiologists and pathologists in detecting tumors, fractures or abnormalities. Predictive analytics is also conducted with the help of deep learning; electronic health records (EHRs) and other structured data are inputted to learn models to make predictions about patient outcomes, disease progression, or treatment response [9]. Such prognostic data can allow doctors to stop reacting to treatment, and actively to offer treatment which can potentially minimize morbidity and result in more lives being spared.

In addition, deep learning models have been used in drug discovery and genomics to identify drugs and molecules structure, protein folding, and identify new therapeutic targets. The combination of omics data (genomics, proteomics, and metabolomics) and deep learning makes it possible to customize medicine, where the approach is tailored to a specific genetic and molecular makeup [10]. Similarly, wearable sensors in remote patient monitoring are responded to by deep-learning algorithms that enable the detection of arrhythmias, sleeping problems or metabolic disorders at earlier stages, introducing more proactive care [11].

Despite these developments we still have problems. Deep learning models require massive amounts of data during their training, and such amounts may not be readily available in healthcare due to fragmented data systems, privacy concerns in healthcare, and the variability of practice across institutions. In addition, it is also common to find that these models are black boxes, i.e. the decision making processes of these models are not easily understood [12]. Transparency issues will be a barrier to implementation when dealing with a field of responsibility, like in the area of healthcare, where accountability and trust is paramount.

The cloud computing, in this case, acts as an enabler, which will enable the computing capabilities and storage capacity necessary to train the deep learning models on the large-scale healthcare datasets. The cloud environments help scientists and clinicians work across organizations yet access high-performance computer resources without installing expensive on-premises computer hardware [13]. However, there also comes the challenge of data governance, privacy, and security to which the usage of the cloud will be elaborated in the second section. Deep learning has already

begun revolutionizing the healthcare sector, by making diagnosis, treatment planning, and patient monitoring better. The fact that it is already interested in cloud-based integration is probable to accelerate those innovations should the issues related to the availability, interpretability, and security of data be resolved successfully [14].

Healthcare Cloud security based on AI

The use of cloud computing in healthcare has been growing in recent years, and the reason supporting the acceleration of this trend is that scalable infrastructure is needed to support the deployment of artificial intelligence (AI) and deep learning models. Moving the data storage and processing to the cloud, healthcare organizations can process large datasets, enable real-time analytics and exchange data across institutions [15]. However, in the process of the change, certain urgent questions of data privacy, security, and compliance emerge as well. Given that the health data of the patients is one of the most sensitive kinds of data, the lack of cloud security, as well as adequate robustness, is a step that must be taken to create trust in AI-powered healthcare solutions. In the United States, healthcare providers must follow a set of stringent regulatory measures in Health Insurance Portability and Accountability Act (HIPAA) and in Europe the General Data Protection Regulation (GDPR) [16]. Such policies must have a high degree of protection of data confidentiality, integrity and availability. Breach of patient information is not only a trust issue, but can lead to grave legal and financial ramifications. Cloud security, therefore, is not just a technical concern of healthcare AI, but a legal and ethical requirement as well [17].

Common security concerns of AI-based healthcare are:

Data breaches: Illegitimate access to the cloud-based data of the patient records can result in the release of vulnerable information to dangerous counterparts.

Attacks with adversarial inputs: AI systems, including deep learning networks, can be attacked with adversarial inputs which produce false predictions or diagnoses [18].

Insider risks: Employees with access to the data can abuse or deliberately or even unintentionally breach cloud system access [19].

Data leakage and model theft: AI models deployed on the cloud can be reverse-engineered or stolen, which can be a threat to intellectual property protection [20].

In order to address them, various cloud security models and solutions have been developed to address them. Two of the encryption techniques applied to patient information protection in transit and rest are end-to-end encryption and homomorphic encryption. Federated learning has emerged as one marvelous solution and it enables AI models to be trained on multiple institutions without the need to transfer raw data out of local servers [21]. This can ensure data privacy and at the same time have the advantage of collaborative model development. There is also the growing popularity of zero-trust security models with no default trust of any user or device that attempt to increase access control and authentication. Moreover, multi-factor authentication, audit trail, and secure API are also essential components of cloud security in the existing strategy [22].

These measures help enhance the transparency, reducing the vulnerabilities, and compliance with the healthcare regulations. In addition to this, cloud service providers are already integrating AI-based security surveillance which is capable of detecting abnormalities, preventing intrusion, and responding to threats within seconds [23]. Despite the capabilities of using deep learning and ChatGPT in healthcare through cloud computing, only in case of considering security and privacy, its benefits can be realized. It is therefore important that strong, safe, and adherent cloud systems be developed in order to facilitate the further evolution of trustful AI in healthcare [24].

Generative AI and ChatGPT in Healthcare

Probably the most significant advancement in the use of artificial intelligence in healthcare is the creation of ChatGPT and other large language models (LLMs). Unlike the classical models of deep learning, which are usually developed with the purpose of image recognition, predictive analytics and so on, ChatGPT is developed based on the principles of the natural language processing (NLP) and is known to be more efficient in understanding, generating and communicating in human-like language [25]. It is a skill which opens up new prospects in clinical decision support, communication with patients, medical research, and education.

One of the most promising uses of ChatGPT could be considered clinical documentation and decision support. Wasting much time typing the patient information in electronic health records (EHRs) is a common phenomenon among healthcare professionals, and it results in administrative and burnout among clinicians [26]. Such a process can be made easier by ChatGPT, which generates transcription on clinical conversations, summaries of patient histories, and automatically generated structured reports. Moreover, medical knowledge synthesis, pointing out possible diagnoses, or highlighting treatment guidelines can also be presented using ChatGPT as real-time decision support. Even though this support is not to replace human experience, it can positively impact efficiency and reduce clinical practice errors [27].

Benefits of ChatGPT in Healthcare

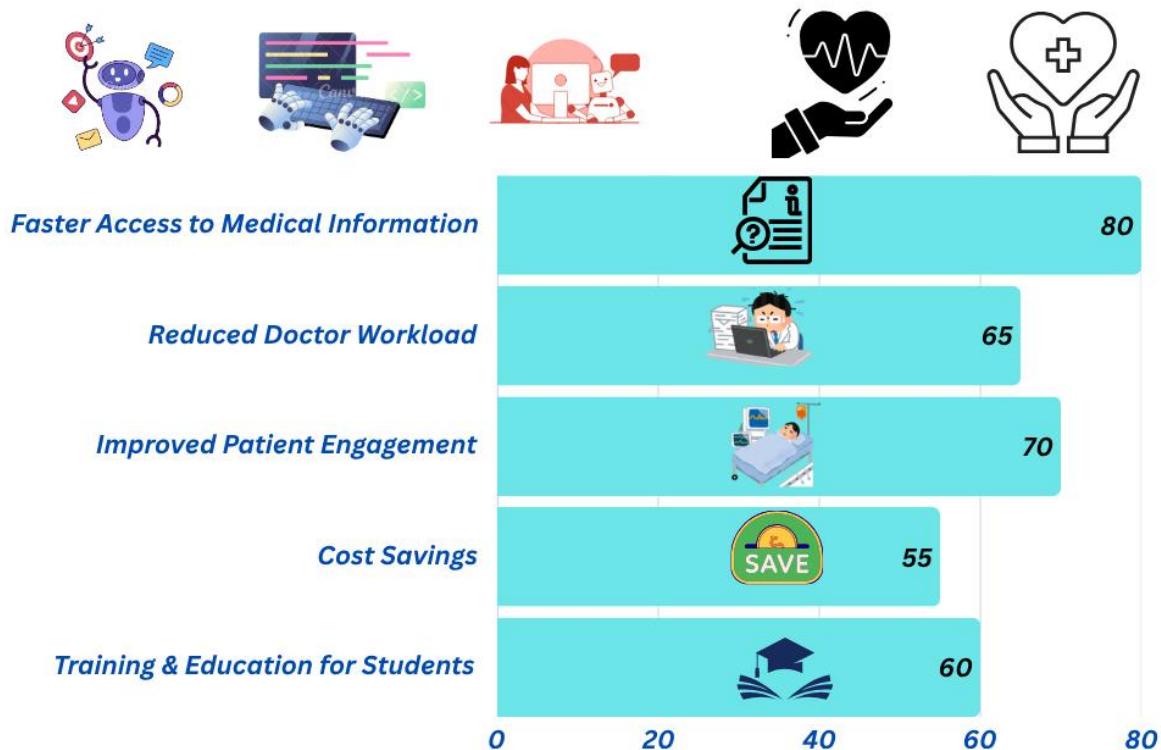


Figure: 2 showing benefits of ChatGPT in healthcare

Other potentials of ChatGPT that are large are patient engagement and health literacy. Many patients have the issue of understanding complex medical terms or prescriptions. Based on its conversational abilities, ChatGPT can simplify medical information, provide personalized

explanations, and answer common medical-related queries. This provides patients with the ability to play an active role in the management of their health in addition to reducing the difference between the treatment team and patients in terms of communication [28]. ChatGPT may serve as an early conversational agent in telemedicine and virtual healthcare when a patient presents with symptoms and the ChatGPT analyzes them, and provides the patient with a new source or a healthcare professional. There is a new potential of ChatGPT in knowledge spreading of medical research and education faster [29]. ChatGPT can be used to assist researchers in writing literature summaries, computing inferences based on a vast quantity of scientific publications, or assist them in formulating hypotheses. ChatGPT could be used as an interactive tutor to medical students and trainees to explain medical concepts, learn based on a case, and prepare exams [30].

Irrespective of the potentials, there are some ethical and security concerns that must be addressed before ChatGPT can be widely utilized in healthcare. They are the existence of bias and misinformation in AI-generated texts and the likelihood of sensitive patient data escaping during the interactions and the need to ensure transparency and accountability of model results. Besides that, ChatGPT cannot possess clinical reasoning or situational judgment, and this fact raises concerns about its excessive use [31]. To alleviate the risk of implementing ChatGPT in the healthcare sector, it needs to be released into secure cloud environments with strict data privacy policies. By combining ChatGPT with protection systems such as content filtering, human and explainable AI oversight, it will be essential to the reliability and trust. ChatGPT and generative AI have a groundbreaking prospect in the healthcare field offering fresh solutions to documentation, communication with patients, research, and education [32]. However, they can be effectively implemented only with high caution and ethical considerations and effective security practices within the cloud-based infrastructures.

Deep Learning and ChatGPT in health care cloud systems.

Secure cloud-based systems with the introduction of deep learning and the ChatGPT are a new healthcare AI. Whereas deep learning is better adapted in handling structured and unstructured data such as medical images, signals and genomic sequences, ChatGPT presents more advanced natural language processing to comprehend and generate text. They will create a complementary

AI ecosystem, which can address the analytical and communicative needs of modern healthcare. Clinical decision support systems (CDSS) is one of these areas of integration [33]. Deep learning models can be applied to medical imaging data to detect abnormalities, but ChatGPT can present the results in a way that can be easily understood by clinicians or patients. An example is a simulated intelligence (AI) system which, with convolutional neural networks (CNNs), initializes by processing an MRI scan before identifying a lesion after which ChatGPT is then applied to summarize the data to the patient in plain language and to the radiologist in clinical language [34]. Such a two-level integration not only increases the accuracy of the diagnostic, but also improves communication and interaction with a patient.

Electronic health records (EHRs) have an enormously strong integration. The structured form of patient data could be mined with a deep learning algorithm to predict the risks of sepsis or cardiovascular events through large volumes of data, and ChatGPT could produce useful clinical records and translate the complex patterns into practical wisdom simultaneously. These systems can be used to scale between hospitals and health networks when implemented on cloud infrastructure to foster common learning and remove care differences [35]. Another opportunity is the personalized medicine. Deep learning can be used to process multi-modal data including the genomic profiles and medical histories to tailor the treatment plans. ChatGPT could then be used as a communicative interface to converting these personalized treatment recommendations to clinicians and patients in legal and user-friendly formats. This integration allows delivering patient-centered care and, at the same time, providing complex analytics to more than technical experts [36].

The cloud has a major role in this integration. The computation power needed to train and deploy the deep learning models and large language models like ChatGPT is found in cloud services. Moreover, they enable free flow of data between institutions without compromising the security and privacy policies. Cloud-based APIs can combine APIs of diagnostic AIs, EHR Systems, conversational AI, and create an intraoperative ecosystem that can be scaled and updated with technology improvements over time [37]. However, this integration also makes things hard. Care should be taken with such issues as interoperability of data, data latency, and data protection

legislation compliance. In addition, it is also important to ensure that AI outputs are understandable and free of bias, which will contribute to gaining more trust in AI-driven systems [38].

Deep learning and ChatGPT are embedded in the secure cloud-based healthcare systems and are promising more than ever before: to improve the diagnostics and personalization of treatment, simplify workflows, and empower patients. Such a vision will require a well-developed system, a robust cloud security and constant human oversight to offer safe, ethical and fair healthcare services [39].

Security and Trust Issues

As AI technologies begin to proliferate in the healthcare sector, with the introduction of deep learning technology and ChatGPT, the question of security and trust lies at the heart of their effective utilization. Cloud based systems as much as they provide the infrastructure that is required when deployed on large scale also have threats which unless addressed can compromise privacy of patients, data integrity and patient outcomes. One of the conditions to be embraced in the healthcare settings is therefore the creation of safe and reliable AI systems. One of the most topical problems is the data privacy [40]. PHI is extremely sensitive and any compromise may prove catastrophic to patient privacy, financial loss, patient confidence. Even with anonymity of the data, re-identification can still take place, in cases when datasets are not treated appropriately. To help mitigate such risks, secure multi-party computation techniques, data encryption techniques, and homomorphic encryption techniques are being explored. Federated learning is also a possible option because it allows using AI models to be trained at multiple institutions simultaneously without transferring raw patient data to a single server [41].

Another very important issue is model interpretability and explain ability. Deep learning models are viewed as black boxes because on prediction they make the right choices but not provide the rationale. Healthcare is one area where there is criticality in transparency in adoption because of clinical accountability. Along the same line, ChatGPT, although effective in generating natural language reply, is sometimes prejudiced, erroneous, or deceptive. This leads to the question of trust and the risks of relying on AI-created advice too much. Explainable AI (XAI) methods and human-in-the-loop control are required to provide a high-level of clinician and patient confidence.

Published in Global Journal of Emerging AI and Computing Available At:

<https://gjeac.com/index.php/GJEAC/article/view/18>

Other threats of adversarial attacks exist [42]. They are deliberate manipulations of inputs that are designed to deceive AI models, e.g., adding little alterations to an image to cause AI to provide a false diagnosis. These clinical practice weaknesses can be fatal. Adversarial training and constant monitoring should be used to counter such threats as defense systems of the healthcare AI systems [43].

Ethical standards and compliance are also the basis of trust. The manifestation of unfair healthcare services towards diverse groups of people may be due to the presence of prejudice in artificial intelligence systems that are typically conditioned by an inappropriate training dataset. Fairness, accountability and transparency in AI systems are becoming areas of concern to the regulatory agencies. Technical protection is just not enough to build trust, however; ethical protection models founded on the importance of patient rights and equity are needed [44]. Clinician/patient interaction is a key to a successful trust-building. Both must be convinced that AI systems are safe and trustworthy and are developed to improve and not replace human expertise. This confidence may be gained via continuing learning, free communication and participatory design. To resolve the problem of security and trust in healthcare AI, technical ingenuity and adherence to laws and regulations as well as humanistic design are involved. Only with appropriate security and trust in place, it can change healthcare through deep learning, ChatGPT, and cloud-based systems [45].

Position and Opportunities in Future

Deep learning, ChatGPT, and secure cloud computing are connected and make the future of healthcare AI which introduces new possibilities to better clinical care, accelerate research, and enable the patient. The current uses have presented potentials but in the next decade, the trend is set to shift towards more advanced, integrated and reliable AI systems, capable of operating harmoniously within the environment of healthcare systems [46]. One of the most thrilling prospects is the development of the next-generation cloud architectures, which will be healthcare specific in nature. Not only such platforms will provide scalable computational means but also include the latest privacy preserving algorithms such as differential privacy, holomorphic encryption and secure federated learning. Such architectures will allow institutions to interact with

global healthcare data without infringing the privacy of patients, and AI models can be trained on population groups and remove bias [47].

Another promising direction is the development of multimodal AI models that can take in and process the information of a vast variety of types, like medical imagery, genomic data, electronic health records (EHRs) and natural language text. The analytical skills of a deep learning model and the conversational skills of ChatGPT would lead to the multimodal systems that would provide a comprehensive picture of patient care [48]. In order to apply the example of an AI system in the future, a radiology scan, genetic profile, and clinical notes of a patient are reviewed and presented with treatment recommendations in a patient-friendly and a clinician-friendly form using a conversational interface [49].

An ability and transparency will also be a primary characteristic of healthcare AI in the future. Explainable AI (XAI) studies attempt to resolve the interpretability issue in current machine learning models and aim to provide visualizations, lineages, or simplified explanations of the choices that model take. Similarly, future generations of language models, including ChatGPT, will need to implement certain mechanisms to prevent misinformation and will need to offer reference or citation sources to increase credibility [50]. Besides, virtual patient models based on AI as a digital twin, simulating the physiology and predicting disease progression or treatment success, will likely become more prevalent in the future. Deep learning can drive the predictive models of digital twins and it is possible that ChatGPT will be the interface that clinicians and patients will be able to interact with these sophisticated simulations [51].

The globalization of healthcare AI is also an opportunity in a bigger scale of things. Under-resourced regions will be in a position to develop the diagnostics and decision support tools with cloud-enabled systems to reduce the disparities in healthcare. Cloud can help to democratize innovation in healthcare by providing relatively cheap, secure, and scalable access to AI tools. Ethical systems of governing and policy structures will be very crucial in shaping the future. The laws will also be forced to follow the technology in order to ensure innovation can be regulated with accountability, justice, and rights of patients [52]. Secure cloud infrastructures, multimodal, explainable and equitable access characterize the future AI in healthcare. These developments will

be capable of revolutionizing the way healthcare is rendered when they are developed in a responsible manner so that they are more personalized, predictive and patient-centered [53].

Conclusion

One of the most radical opportunities that contributed to the development of modern healthcare is the integration of deep learning with ChatGPT and a secure cloud-computing platform. It was stressed in this review, artificial intelligence (AI) is not a venerable supplement but it is a quicker companion to clinical decision-making, interactions with patients, medical research, and management of healthcare systems. Although the trip is still in progress, it can be seen that the combination of these technologies can really change the future of medicine in a really dramatic and long-term way.

It has already been demonstrated that deep learning can currently analyze medical images, medical signals, genomic sequences, and massive quantities of medical records with extraordinary accuracy. It has transformed healthcare into a more predictive and data-driven model in which clinicians have the authority to diagnose diseases earlier, tailor treatment strategies, and make the most out of patients. Meanwhile, ChatGPT and other AI firms have expanded the field of AI in the health industry beyond the number and visual computation field, offering enhanced natural language understanding and generation. This capability enables to reshape clinical records, improve the sharing of information between patients and medical practitioners and democratize access to medical information through conversational interfaces.

Cloud computing is relevant towards enabling such innovations. Neither deep learning nor ChatGPT can be implemented in the real healthcare system due to the absence of the scalable storage, high-performance computing and collaborative structures offered by the cloud. Cloud infrastructures can help healthcare organizations to operate and implement complex AI models on global datasets in a way that transformations can be shared across facilities and regions. At the same time, using a cloud-based system, it is possible to offer a population scale AI-based services, and those that are not accessible to a high-quality diagnostic tool or decision-support tool can gain access to this service.

However, there are severe security and trust concerns to be available together with these opportunities. Healthcare information is considered to be one of the most sensitive and any data breach can have catastrophic consequences to patients and providers. Similarly, the reliability and fairness issues are caused by adversarial attacks, model theft, and bias of AI systems. Most deep learning models have a black box nature, and the fact that ChatGPT might provide misinformation adds to the significance of explainability, transparency, and human control. The credibility of AI does not rest solely on the accuracy, but also on the responsibility and ethical management and reverence of patient autonomy.

These problems will make or break healthcare AI in the future as it develops. Federated learning, differential privacy, and homomorphic encryption are already creating a way where it can be possible to keep data secure and still contribute to global healthcare datasets. Similarly, explainable AI (XAI) will be required as well to ensure that clinicians understand and can justify the recommendations made by AI systems. Relevant reforms to the policies on ethics and the scope of acceptable use will also be essential in setting the boundaries of what can be used and ensure that AI innovations can be modified to reflect the values of fairness, inclusiveness, and patient safety.

The integration of deep learning and ChatGPT in the safe cloud environments can see new possibilities in personalized, predictive, and participatory healthcare. A potential future of healthcare ecosystems is a situation where AI systems can process multimodal data, such as imaging and genomics data, as well as clinical notes and wearable sensors, and generate information in a natural language, tailored to the provider and the patient. These systems can reduce the clinical workload and enhance interaction with the patients, in addition to eradicating health disparities between the regions and populations.

Lastly, the introduction of AI in healthcare will be based not only on the development of technologies but on the trust and collaboration of individuals. Collaboration between the clinicians, the patients, the policymakers and technologists should result in the development of systems that are not only effective and robust, but also secure, transparent and fair. One cannot regard AI as a substitute of human experience, but a supporting tool that can enhance the efficiency of human

decision-making to deliver improved health outcomes to everyone. The safe cloud-based applications deep learning and ChatGPT are paradigm shifts in healthcare. They offer the world entirely new chances to transform clinical practice, patient empowerment and scientific discovery. At the same time, they need awareness on managing the problem of data privacy, security, explainability, and ethical use. Combining the innovativeness with accountability, the healthcare can leverage all AI capabilities to make the future not only technologically improved, but also human, inclusive, and trustworthy. The future lies in the development of AI technologies to be deployed as reliable partners in the medical field to usher a new paradigm of smart, sensitive, and patient-oriented medicine.

References

- [1]. Neoaz N, Amin MH. Advanced AI Paradigms in Mental Health: An In-depth Exploration of Detection, Therapy, and Computational Efficacy. *Global Insights in Artificial Intelligence and Computing*. 2025 Jan 25;1(1):40-6.
- [2]. Javeedullah M. Interoperability Solutions for Efficient Health Informatics Systems. *Global Trends in Science and Technology*. 2025 Apr 22;1(1):176-94.
- [3]. Zeb S, Lodhi SK. AI for predictive maintenance: Reducing downtime and enhancing efficiency. *Enrichment: Journal of Multidisciplinary Research and Development*. 2025 May 13;3(1):135-50.
- [4]. Ozkan-Okay M, Akin E, Aslan Ö, Kosunalp S, Iliev T, Stoyanov I, Beloiev I. A comprehensive survey: Evaluating the efficiency of artificial intelligence and machine learning techniques on cyber security solutions. *IEEe Access*. 2024 Jan 18; 12:12229-56.
- [5]. Kabeer MM. Artificial Intelligence in Modern Manufacturing: Opportunities and Barriers. *Global Trends in Science and Technology*. 2025 Jul 16;1(3):83-100.
- [6]. Javeedullah M. Integrating Health Informatics Into Modern Healthcare Systems: A Comprehensive Review. *Global Journal of Universal Studies*.;2(1):1-21.
- [7]. Rao KV, Sivakumar V, Swathi R. Generative AI and Secure IoMT Systems for Enhanced Real-Time Health Monitoring and Security. InUtilizing AI of Medical Things for Healthcare Security and Sustainability 2025 (pp. 469-502). IGI Global Scientific Publishing.

Published in Global Journal of Emerging AI and Computing Available At:

<https://gjeac.com/index.php/GJEAC/article/view/18>

[8]. AR S, Katiravan J. Enhancing anomaly detection and prevention in Internet of Things (IoT) using deep neural networks and blockchain based cyber security. *Scientific Reports*. 2025 Jul 1;15(1):22369.

[9]. Javeedullah M. Role of Health Informatics in Public Health Surveillance and Response. *American Journal of Artificial Intelligence and Computing*. 2025 Apr 21;1(1):70-86.

[10]. Neoaz N, Shah HH, Zainab H. AI in Personalized Medicine: Transforming Treatment Plans through Precision Health. *Global Journal of Emerging AI and Computing*. 2025 Jan 23;1(1):34-50.

[11]. Teslyuk V, Narushynska O, Arzubov M, Prots D. End-to-end development of a retrieval-augmented large language model for cloud-based healthcare applications.

[12]. Javeedullah M. Using Health Informatics to Streamline Healthcare Operations. *American Journal of Artificial Intelligence and Computing*. 2025 Apr 7;1(1):24-44.

[13]. Shihab SR, Sultana N, Samad A. Revisiting the use of ChatGPT in business and educational fields: Possibilities and challenges. *BULLET: Jurnal Multidisiplin Ilmu*. 2023;2(3):534-45.

[14]. Shehzad K, Ali U, Munir A. Computer vision for food quality assessment: Advances and challenges. Available at SSRN 5196776. 2025.

[15]. Javeedullah M. Future of Health Informatics: Bridging Technology and Healthcare. *Global Trends in Science and Technology*. 2025 Apr 4;1(1):143-59.

[16]. Salvi S, Vu G, Gurupur V, King C. Digital Convergence in Dental Informatics: A Structured Narrative Review of Artificial Intelligence, Internet of Things, Digital Twins, and Large Language Models with Security, Privacy, and Ethical Perspectives. *Electronics*. 2025 Aug 18;14(16):3278.

[17]. Abid N, Neoaz N, Amin MH. AI-Driven Approaches to Overcoming Tumor Heterogeneity in Breast Cancer: Modelling Resistance and Therapy Outcomes. *Global Journal of Universal Studies*.;1(2):591050.

[18]. Neoaz N. Harnessing Artificial Intelligence for Cybersecurity in Healthcare and Food Processing: A Review of Emerging Trends and the Role of Generative Models like ChatGPT. *Global Trends in Science and Technology*. 2025 Jul 24;1(3):144-62.

- [19]. Abbasi N, Nizamullah FN, Zeb S. Ai in healthcare: Using cutting-edge technologies to revolutionize vaccine development and distribution. JURIHUM: Jurnal Inovasi dan Humaniora. 2023 Jun 14;1(1):17-29.
- [20]. Bacha A. Artificial Intelligence in Healthcare, Cybersecurity, Machine Learning, and Food Processing: A Cross-Industry Review. American Journal of Artificial Intelligence and Computing. 2025 Jul 24;1(2):87-104.
- [21]. Santhi TM, Srinivasan K. ChatGPT-Based Learning Platform for Creation of Different Attack Model Signatures and Development of Defense Algorithm for Cyberattack Detection. IEEE Transactions on Learning Technologies. 2024 Jun 21; 17:1829-42.
- [22]. Abbasi N, Nizamullah FN, Zeb S. AI in healthcare: integrating advanced technologies with traditional practices for enhanced patient care. BULLET: Jurnal Multidisiplin Ilmu. 2023 Jun 13;2(3):546-6.
- [23]. Govindarajan V. Early Detection and Risk Stratification of Osteosarcoma, A Rare Tumor, Using Artificial Intelligence: A Systematic Review. Advances in Artificial Intelligence and Machine Learning. 2025; 5 (2): 221 [Internet]. Sarcoma; 2024
- [24]. Lodhi SK, Zeb S. Ai-Driven Robotics and Automation: The Evolution of Human-Machine Collaboration. Journal of World Science. 2025 May 13; 4(4):422-37.
- [25]. Neoaz N. Big Data Analytics Study the implications of big data analytics on decision-making processes in organizations. Author Nahid Neoaz. 2025 Jan 20.
- [26]. Javeedullah M. Security and Privacy in Health Informatics: Safeguarding Patient Data in a Digital World. AlgoVista: Journal of AI and Computer Science. 2(3):52-68.
- [27]. Neoaz N, Amin MH. Advanced AI Paradigms in Mental Health: An In-depth Exploration of Detection, Therapy, and Computational Efficacy. Global Insights in Artificial Intelligence and Computing. 2025 Jan 25; 1(1):40-6.
- [28]. Er-Rays Y, M'dioud M. ChatGPT in healthcare facilities: an overview and innovations in technical efficiency analysis. Available at SSRN 4771070. 2024 Mar 24.
- [29]. Bacha A. Healing with Algorithms: The Future of AI-Driven Diagnostics and Treatment. American Journal of Artificial Intelligence and Computing. 2025 May 9;1(1):103-18.

[30]. Khan M, Sherani AM, Bacha A. The Neurological Nexus: Exploring EEG, Facial Recognition, and Graph Algorithms in Mental Health AI. *Global Insights in Artificial Intelligence and Computing*. 2025 Jan 26;1(1):47-56.

[31]. Bacha A. Unveiling Frontiers: Hybrid Algorithmic Frameworks for AI-Driven Mental Health Interventions. *AlgoVista: Journal of AI and Computer Science*. 2025;2(1):1-8.

[32]. Santhi TM, Srinivasan K. ChatGPT-Based Learning Platform for Creation of Different Attack Model Signatures and Development of Defense Algorithm for Cyberattack Detection. *IEEE Transactions on Learning Technologies*. 2024 Jun 21; 17:1829-42.

[33]. Bacha A, Zainab H. AI for Remote Patient Monitoring: Enabling Continuous Healthcare outside the Hospital. *Global Journal of Computer Sciences and Artificial Intelligence*. 2025 Jan 23; 1(1):1-6.

[34]. Zeb S, Nizamullah FN, Abbasi N, Qayyum MU. Transforming Healthcare: Artificial Intelligence's Place in Contemporary Medicine. *BULLET: Jurnal Multidisiplin Ilmu*. 2024; 3(4):592385.

[35]. Govindarajan V, Kumar P, Kumar D, Devi H, Kumar S, Shiwlani A. ROLE OF CLOUD-DEPLOYED GRAPH NEURAL NETWORKS IN MAPPING CORONARY ARTERY DISEASE PROGRESSION: A SYSTEMATIC REVIEW. *Journal of Medical & Health Sciences Review*. 2025 May 30; 2(2).

[36]. Neoaz N, Husnain A. Deciphering the AI Healthcare Evolution: Opportunities, Risks, and the Path Forward. *Global Trends in Science and Technology*. 2025 Mar 30; 1(1):121-42.

[37]. Bacha A, Shah HH. AI-Enhanced Liquid Biopsy: Advancements in Early Detection and Monitoring of Cancer through Blood-based Markers. *Global Journal of Universal Studies*. 1(2):68-86.

[38]. Govindarajan V, Devi H, Kumar P. Revolutionizing Cardiac Care: A Systematic Review of Intelligent Wearables And Cloud-Based Analytics.

[39]. Javeedullah M. Big Data and Health Informatics: Managing Privacy, Accuracy, and Scalability. *Global Trends in Science and Technology*. 2025 Jul 3;1(3):29-47.

[40]. Neoaz N. Role of Artificial Intelligence in Enhancing Information Assurance. *BULLET: Jurnal Multidisiplin Ilmu*. 2024; 3(5):749-58.

- [41]. Samad A, Jamal A. Transformative Applications of ChatGPT: A Comprehensive Review of Its Impact across Industries. *Global Journal of Multidisciplinary Sciences and Arts*. 2024; 1(1):26-48.
- [42]. Govindarajan V. Early Detection and Risk Stratification of Osteosarcoma, A Rare Tumor, Using Artificial Intelligence: A Systematic Review. *Advances in Artificial Intelligence and Machine Learning*. 2025; 5 (2): 221 [Internet]. Sarcoma; 2024
- [43]. Bacha A, Sherani AM. AI in Predictive Healthcare Analytics: Forecasting Disease Outbreaks and Patient Outcomes. *Global Trends in Science and Technology*. 2025 Jan 24; 1(1):1-4.
- [44]. Govindrajan V. Machine learning based approach for handling imbalanced data for intrusion detection in the cloud environment. In 2025 3rd International Conference on Disruptive Technologies (ICDT) 2025 Mar 7 (pp. 810-815). IEEE.
- [45]. Shah HH, Bacha A. Leveraging AI and Machine Learning to Predict and Prevent Sudden Cardiac Arrest in High-Risk Populations. *Global Journal of Universal Studies*.;1(2):87-107.
- [46]. Bacha A, Sherani AM. AI in Predictive Healthcare Analytics: Forecasting Disease Outbreaks and Patient Outcomes. *Global Trends in Science and Technology*. 2025 Jan 24; 1(1):1-4.
- [47]. Neoaz N, Shah HH, Zainab H. AI in Personalized Medicine: Transforming Treatment Plans through Precision Health. *Global Journal of Emerging AI and Computing*. 2025 Jan 23; 1(1):34-50.
- [48]. Govindarajan V, Muzamal JH. Advanced cloud intrusion detection framework using graph based features transformers and contrastive learning. *Scientific Reports*. 2025 Jul 1;15(1):20511.
- [49]. Vasamsetty C, Nippatla RP, Kadiyala B, Alavilli SK, Boyapati S. AI-Powered Healthcare Services in Banking: A Hybrid Deep Learning Framework for Secure Cloud-Based Medical Data Processing. *International Journal of HRM and Organizational Behavior*. 2024 Jan 24;12(2):449-61.
- [50]. Nankya M, Mugisa A, Usman Y, Upadhyay A, Chataut R. Security and privacy in E-health systems: a review of AI and machine learning techniques. *IEEE Access*. 2024 Sep 27.

- [51]. Govindarajan V. A Novel System for Managing Encrypted Data Using Searchable Encryption Techniques. International Journal of Advanced Computer Science & Applications. 2025 Mar 1;16(3).
- [52]. Kim K, Park J, Langarica S, Alkhadrawi AM, Do S. Integrating chatgpt into secure hospital networks: A case study on improving radiology report analysis. arXiv preprint arXiv:2402.09358. 2024 Feb 14.
- [53]. Kaur T, Garg R, Prashar D, Jha S, Ahmad S, Nazeer J. Healthcare-as-a-Service Provisioning using Cloud-of-Things: A Contemporary Review of Existing Frameworks based on Tools, Services and Diseases. Scalable Computing: Practice and Experience. 2025 Jul 14;26(5):2214-30.