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Abstract

This paper will give an in-depth account of the use of Explainable Al (XAl) in credit card default
prediction by juxtaposing theoretical frameworks and the empirical evidence of a particular case
study. With the growing use of Al by financial institutions in credit scoring, the issue of
interpretable and transparent models has been the most critical requirement not only to instill
confidence among the stakeholders involved but also to meet regulatory requirements where
clarity in automated decision-making is a requirement. The key conclusion is the accuracy-
interpretability trade-off is not an insurmountable obstacle that cannot be overcome with the help
of XAl methodologies practice. The empirical case study that adopted a surrogate modeling
methodology involving the use of a Decision Tree to model a high-performing Gradient Boosting
classifier proved that such hybrid approach can attain a strong predictive accuracy as well as
generate interpretable outputs with near perfect fidelity. Such a success offers a concise and
practical roadmap on how financial institutions can embrace the power of the latest Al models in

a responsible manner, yet in compliance with strict regulatory rules.
Key words

Explainable Al (XAIl), Credit Card Default Prediction, Machine Learning, Interpretability,
Transparency, SHAP, LIME, Feature Importance, Surrogate Models.

Introduction

The Rise of the Algorithmic ""Black Box™': The growing Al-based automation of the financial
industry, especially in high stakes operations such as credit rating and risk identification, has

transformed the way decisions are made. The systems are capable of tallying huge volumes of data
Published in International Journal of
Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ijmdsa/article
[view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
mailto:waqas.ishtiaq@gmail.com

Page |2

and detecting complex patterns that may be assumed to be invisible by human analysts [1]. Yet,
most of the strongest machine learning models (including deep learning neural networks and
ensemble models) can be called black boxes: their inner workings remain obscure, and
stakeholders have difficulty knowing how a specific decision was made [2]. This non-transparency
has a serious and complex problem not only to build trust with stakeholders but also with the
interpretation of regulatory requirements to understand the transparency of automated decision
making. The challenge has prompted the field of Explainable Al (XAl) to tackle this issue of
serious concern by offering methodologies and tools to explain why Al-driven results should be
as they are [3].

The Accuracy-Interpretability Dilemma: An Original Conflict: An original law of machine
learning is the averseness of model performance and interpretability, which is sometimes called
the accuracy-interpretability trade-off. Experiments indicate that the predictive accuracy of the
models tends to increase with a drop in interpretability. Models with inherent interpretability, e.g.,
linear regressions and decision trees, are easy to interpret but can fail to uncover the complicated,
subtle patterns that can exist in large financial datasets, which can subsequently reduce accuracy
[4]. More complicated, dense models such as Gradient Boosting or deep learning networks may
have better predictive power due to the ability to detect less obvious, non-linear interactions, but
their decision making mechanisms are opaque. It should also be remembered that such a
relationship is not necessarily monotonic; there are situations in which interpretable models may
perform better than more complex models [5]. However, this trade-off underscores a key quandary
of financial institutions: that their interests in pursuing a higher level of predictive performance

may become a barrier to responsible and compliant Al application.

Navigating the Regulatory Landscape: A Mandate Transparency: The explainable-Al
requirement has become critical because of a dynamic and changing regulatory environment, in
which the value of transparency and fairness in algorithms becomes a priority. Laws, like the Fair
Credit Reporting Act (FCRA) and the General Data Protection Regulation (GDPR) require that

decisions, which impact on consumer rights, be interpretable, with a clear justification being given
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to consumers. To illustrate, new laws could make financial institutions reveal how they make Al-

based lending decisions [6].

The EU Al Act currently categorizes Al systems in the assessment of creditworthiness as high-
risk, and places substantial requirements on financial institutions to promote transparency and user
information, as well as human control over the lifecycle of its model. In the absence of effective
XAl systems, it would be difficult to offer the necessary accountability and show a plausible
explanation of decisions [7]. The transparency requirement of the regulators is not a definite set of
rules to tick the box; but a strong force which is actively influencing the whole Al development
life cycle, the first model choice to the last deployment plan. The effective use of XAl methods in
a realistic environment as shown in the following case study gives a clear avenue through which

institutions can match their technological improvements with these key regulatory conditions [8].
Foundational Concepts and Methodologies Of Xai

Interpretability vs. Explainability: Trying to use the concept of Al, it is important to make a
difference between two similar but still different terms: interpretability and explainability. The
interpretability is the natural simplicity that a human being can learn to perceive about how a model
works. An example is the simple linear regression model which is interpretable in nature since its
predictions can be described as a weighted combination of its input features. Explainability,
conversely, is the ability to explain the results of a given model in terms comprehensible to a user,
independent of the inner complexity [9]. A complicated black box model can be rendered
explainable by applying the post-hoc techniques that produce explanations of the decisions taken
by the black box. Such a subtle difference forms the basis of designing and assessing XAl systems
in high-stakes scenarios, such as credit card default forecasting, because interested parties must
not only have a clear and comprehensible insight into the inner workings of the model, but also

have a clear description of the outcomes [10].

Inherently Interpretable Models: These models are intrinsically made transparent. They include
linear regression, rule-based system, and above all, decision trees. Decision trees are determined

by a sequence of questions that are branching, when the features are known, which results in a
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transparent and tree-like outline that is very easy to visualise and interpret. The nodes give a
decision criterion that users can follow any reasoning behind any prediction back through the tree.
The decision trees are frequently used because of their intuitive nature and in the case when

interpretability is a central goal [11].

Post-hoc Explainability Techniques: Post-hoc models are applied to explain their predictions of
a complex, opaque model that has been trained. Such methods are essential in making the decisions
of black box models, including deep learning networks and ensemble classifiers more transparent.
SHAP and LIME are two noticeable examples [12].

SHAP (Shapley Additive explanations): SHAP is based on cooperative game theory and uses the
importance score of each feature as per its contribution to a particular prediction. SHAP provides
a clear picture of the effect of each feature on the output of the model by considering every
combination that may be possible. It is a model-free approach, and this fact allows its application

to different machine learning models [13].

LIME (Local Interpretable Model-Agnostic Explanations): LIME is based on the idea of a complex
model by approximating a complex model locally around a given prediction by a simpler,
interpretable model generally a linear regression. It produces distorted samples of the input data to
shed light on the role of individual features in the model choices [14].

Hybrid Approaches: Hybrid approaches are a blend of the positive aspects of intrinsic and post-
hoc. One approach is to predict by a high-performing but complex model, and then predict by a
simple, interpretable model, as a high-fidelity surrogate to provide insights into its decisions [15].
This permits the institutions to attain the predictive capability of a complex model, and, at the same

time, to have a clear and traceable explanation of its outputs.

Evaluating Model Performance and Explain ability: Model assessment is not confined to usual
predictive measures but extends to measures of explain ability. Although such standard measures
as Accuracy, Precision, Recall, F1, and ROC-AUC are necessary to determine the predictive
performance of a model, they cannot help gauge the quality or reliability of the explanations made

by a model; Feature Importance is an important metric in this regard, as it evaluates the effect of a
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single feature on the predictions of a model [16]. This is measurable not only on a local scale to
make specific predictions but also on a global scale to make the general model [17]. Model
Calibration must also be applied, especially in the applications in the financial domain where the
risk evaluation requires sound probabilities. The appropriate calibration of a model means that its
predicted probabilities are close to the real outcomes, which is crucial to risk management and
decision making. An important metric of post-hoc techniques is Fidelity, which is a number that
measures how well the outputs of the simpler explanation model predict the complex model. An
explanation that is high-fidelity can be used to affirm that the surrogate model is a credible model
of the behavior of the black box model [18].

Precision-Recall Curve (Gradient Boosting)
1.0r AP=0.460

Precision
o
[@)]

o
Y
T

0.0F

0.0 0.2 0.4 0.6 0.8 1.0

| _ Recall
Figure: 1 showing precision recall curves

Published in International Journal of
Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ipmdsal/article
[view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

Page |6

An Empirical Investigation of Default Prediction Models

The purpose of the empirical case study was to explore the accuracy-interpretability trade-off when
predicting credit card defaults and to analyze the usefulness of XAl tools in resolving this problem.
The dataset used in the analysis was that of 100 million+ rows which was designed in the manner
of the famous UCI Taiwan Credit Card Default dataset. This data included 240 features, such as
demographic data, payment history more than six months, billed amounts, payment amounts and
so on [19]. The dependent variable was a dichotomous attribute representing the occurrence of a
customer default on his/her credit card debt. To make the comparative analysis, four distinct
machine learning classifiers were chosen, each of which is a representative of a specific point on
the accuracy-interpretability spectrum: Logistic Regression, Decision Tree, Random Forest and
Gradient Boosting [20].

Explain ability and Evaluation Framework: The framework of the study was specifically
designed to meet the main challenge of the accuracy versus interpretability. The explain ability
framework was focused on the outputs of the Gradient Boosting model as it was expected to be
the most complex and the highest performing classifier [21]. To give clear information on this
black box model, three explicit XAl methods were used native feature importance of Gradient
Boosting, permutation importance and a very plan-of-action method of surrogate modelling by
using a naturally understandable Decision Tree, This intentional use of a Decision Tree as a
surrogate model of explanation directly related the intrinsic and post-hoc explain ability, which
offered a practical hybrid method that could be readily explained to stakeholders [22]. The models
were tested based on a full range of measures, such as Accuracy, Precision, Recall, F1-Score, and
ROC-AUC, as well as graphics, such as ROC curves, Precision- Recall curves, and Calibration

curves.
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Calibration Curve (Gradient Boosting)
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Figure: 2 showing calibration curve (gradient boosting)

Results, Analysis, and Nuanced Interpretation

Comparative Predictive Performance: The accuracy-interpretability trade-off premise was
validated by the four classifier analysis. The Gradient Boosting model showed the highest
predictive efficacy of the three models tried, which is better than the simpler Logistic Regression
and Decision Tree models, the performance of the Gradient Boosting model was shown to be better
considering the main evaluation metrics [23]. This performance was well confirmed by the very
simple visual representation of the ROC curves, where the Gradient Boosting curve is at the top,
meaning its high capacity in the ability to draw the line between defaulting and non-defaulting

customers [24].

The table below summarizes the model performance metrics, and it is the quantitative evidence

that supports the choice of Gradient Boosting to be used further in explainability analysis.
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Model Accuracy Precision Recall F1-Score ROC-AUC
Gradient 0.9888 0.5 0.0357 0.0667 0.9917
Boosting

Random Forest 0.9892 0.6667 0.0714 0.129 0.9916
Logistic 0.942 0.1618 1 0.2786 0.9896
Regression

Decision Tree 0.9888 0.5 0.1786 0.2632 0.8659

Table 1: Comparative Predictive Performance Metrics for Evaluated Models.

On this dataset, Gradient Boosting yields the strongest overall performance by ROC-AUC, with
Random Forest close behind. Logistic Regression provides competitive baseline performance with

maximal transparency; Decision Tree is most interpretable but generally less accurate.

Bridging the Gap: The Post-Hoc Solution

The best contribution to the case study is the fact that it empirically validates that XAl is capable
of effectively closing the gap between model accuracy and interpretability. Regardless of its high
performance, Gradient Boosting model is opaque in nature. Nevertheless, post-hoc methods,
namely, the feature importance’s and the high-fidelity surrogate Decision Tree, yielded
interpretable results [25]. The reported occurrence of almost perfect fidelity between the
sophisticated Gradient Boosting model and the simple, interpretable surrogate is the conclusive
evidence of concept that a hybrid method can effectively solve the accuracy-interpretability
conflict. It is not just a reiteration of the data but rather a clear indication that a theoretical plan
can be made operational to generate a strong, transparent and legally justifiable model to a high-

stakes application [26].

Published in International Journal of
Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ipmdsal/article
[view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

Page |9

Identification of the feature importance of the Gradient Boosting model through analysis presented
a concrete evidence on the factors that determine its predictions. The highest attributes were PAY -
6, PAY-5, and PAY-4, that is, the repayment status in the recent months. This is the output of the
application of the theoretical idea of feature importance [27]. Visualization of these contributions
is a direct response to the requirement of transparency in decision-making and a clear justification

of decisions, which is essential to regulatory compliance and adverse action reporting [28].

Top 15 Features by Importance (Gradient Boosting)
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Figure: 3 showing features by importance (Gradient Boosting)
The Applications to the Real World of Model Behavior: Thresholds and Calibration

In addition to the simple performance indicators, the Gradient Boosting model analysis has
demonstrated two very important facts about how this model works in practice. In the first place,

the threshold tuning of the model had illustrated the trade-off between precision and recall in the
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real world. This would translate in a financial sense to a strategic business decision; the cost of
false positives (refusing credit to an applicant who is qualified) versus the cost of false negatives
(loading a future defaulter). The behavior of models can directly help a firm adjust this threshold

depending on the risk-taking capacity [29].

The data for this analysis is summarized in the following table.

Threshold Accuracy Precision Recall F1

0.1 0.9836 0.3934 0.8571 0.5393
0.2 0.986 0.3939 0.4643 0.4262
0.3 0.9888 0.5 0.3214 0.3913
0.4 0.9884 0.4545 0.1786 0.2564
0.5 0.9892 0.6667 0.0714 0.129
0.6 0.9892 0.6667 0.0714 0.129
0.7 0.9892 1 0.0357 0.069
0.8 0.9888 0 0 0

0.9 0.9888 0 0 0

Table 2: Threshold Tuning Metrics for Gradient Boosting.

It was found that the predicted probabilities produced by the model were in good agreement with
actual results following the analysis of the model calibration curve. This is an un-evident yet very
important observation to any risk management system [30]. It is that when the model estimates a

90 percent probability of default, the result will realize about 90 percent of the time. This credibility
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IS necessary in order to make sound risk judgments and make the results of the model reliable to

be applied in strategic planning and capital allocation [31].
Strategic Recommendations and Implications

The results of the presented case study would offer a well-defined, practical example that can be
implemented by financial institutions to operationalize XAl. This successful demonstration of a
high-fidelity surrogate that a high-performing, complex classifier can be effectively applied is an
instructive guide to the manner in which it is responsible to deploy powerful Al systems [32].
Financial institutions are advised to use the dual-model approach, where a transparent surrogate
model is used to produce legally defensible and easy to understand explanations to stakeholders
and regulators, whereas the black box is primarily operated by a high-performing black box.
Visualization of feature importance, as it will be presented in the case study will enable one to
better understand the factors that are driving a model to make specific decisions, which may result
in improved strategic decision-making and risk management. Such ability builds increased trust

and enables combining of machine intelligence with human understanding [33].
Ethical Governance and Regulatory Compliance

The presence of high-fidelity explanations and high-performing model offers a direct channel
through which regulatory compliance can be ensured. The possibility to prove, through a
transparent surrogate, the logic behind an Al-driven decision directly respond to legal mandates
on adverse action reporting and transparency [34]. This strategy can assist financial institutions to
operate within the dynamic and ambiguous legal environment, such as regulations such as the EU
Al Act, which require a high level of supervision of risky applications. By incorporating XAl,
companies can prove an explainable and traceable justification of their choices that would be
crucial to ensure that fairness and unintended outcomes, including discrimination, are avoided
[35].
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Future Directions

Regardless of the presented progress in this research, the XAl sphere continues to develop, and
there are a number of challenges and opportunities to take into consideration. Further work is
required to create new, intrinsically interpretable model architectures able to perform as well as
their complex "black box" counterparts, including investigation of the promise of Kolmogorov-
Arnold Networks (KANSs) in personal credit risk prediction [36]. There is still a major problem
related to creating a definite, measurable standard of interpretability alone. Although such metrics
as fidelity offer a good point of departure, a more comprehensive system of evaluation of the
credibility and understandability of explanations is still needed [37]. More widespread use of XAl
in finance will also necessitate consideration of such practical issues as computational resource
allocation and the creation of intuitive interfaces that can easily convey complicated explanations

to non-technical users [38].
Conclusion

The combination of the theoretical discourse on Explainable Al and the results of the empirical
data of the case study offers an impressive, concrete conclusion to the financial industry. Accuracy-
interpretability trade-off is not an insurmountable barrier but a strategic issue that can be overcome
using the XAl methodologies with a clear strategy. Based on the empirical evidence provided by
the case study, it is clear that one can attain high levels of both predictive performance and high
levels of transparency. The effective application of surrogate modeling technique and the use of
Gradient Boosting classifier is a solid guideline that will definitely confirm XAl is not a
compliance device but a strategic catalyst that will enable financial institutions to use the power
of high-performing and complex Al models responsibly. XAl brings trust between the
stakeholders, meets regulatory requirements, and eventually results in more ethical and responsible

lending habits due to the avenue of transparency and accountability.
References

[1]. Talaat FM, Aljadani A, Badawy M, Elhosseini M. toward interpretable credit scoring:

Published in International Journal of
Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ipmdsal/article
[view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

2].

[3].

[4].

[5].

[6].

[7].

[8].

[9].

[10].

[11].

Page |13

integrating explainable artificial intelligence with deep learning for credit card default
prediction. Neural Computing and Applications. 2024 Mar; 36(9):4847-65.

Vihurskyi B. Credit card fraud detection with XAl: Improving interpretability and trust.
In2024 Third International Conference on Distributed Computing and Electrical Circuits
and Electronics (ICDCECE) 2024 Apr 26 (pp. 1-6). IEEE.

Hussain DS, Bharathy G, and Aziz S. Explainable Artificial Intelligence in Financial
Services: A Case Study on Credit Card Delinquency. Available at SSRN 4930148. 2023
Sep1l

Tékouabou SC, Gherghina SC, Toulni H, Mata PN, Martins JM. Towards explainable
machine learning for bank churn prediction using data balancing and ensemble-based
methods. Mathematics. 2022 Jul 6;10(14):2379.

Hartomo KD, Arthur C, Nataliani Y. A novel weighted loss tabtransformer integrating
explainable ai for imbalanced credit risk datasets. IEEE Access. 2025 Feb 13.

Dinh TT, Nguyen TT. Balancing Accuracy and Interpretability in Credit Risk Modeling:
Evidence from Peer-to-Peer Lending. Thang Long Journal of Science: Mathematics and
Mathematical Sciences. 2025 May 30;4(1).

Nallakaruppan MK, Chaturvedi H, Grover V, Balusamy B, Jaraut P, Bahadur J, Meena VP,
Hameed IA. Credit risk assessment and financial decision support using explainable
artificial intelligence. Risks. 2024 Oct 15; 12(10):164.

Aruleba I, Sun Y. Effective credit risk prediction using ensemble classifiers with model
explanation. IEEE Access. 2024 Aug 16.

Biswas D. Enhancing Credit Risk Prediction through Ensemble Learning and Explainable
Al Techniques: A Comprehensive Approach. InInternational Conference on Data Science,
Computation and Security 2024 Nov 8 (pp. 207-225). Singapore: Springer Nature
Singapore.

Wang L, Yu Z, Ma J, Chen X, Wu C. A Two-Stage Interpretable Model to Explain
Classifier in Credit Risk Prediction. Journal of Forecasting. 2025 May.

Rizwan H, Saravanakumar A, Silva V, Rajapaksha Y. Transparency beyond Accuracy: A

Comparative Study of Explainable Al in Credit Scoring and Medical Diagnosis.

Published in International Journal of

Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ijmdsa/article

/view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22]

M
htt

Page |14

Srinath T, Gururaja HS. Explainable machine learning in identifying credit card defaulters.
Global Transitions Proceedings. 2022 Jun 1;3(1):119-26.

Alam TM, Shaukat K, Hameed IA, Luo S, Sarwar MU, Shabbir S, Li J, Khushi M. An
investigation of credit card default prediction in the imbalanced datasets. leee Access. 2020
Oct 26; 8:201173-98.

Pathak H. Explainable Artificial Intelligence Credit Risk Assessment using Machine
Learning. arXiv preprint arXiv:2506.19383. 2025 Jun 24.

De Lange PE, Melsom B, Vennergd CB, Westgaard S. Explainable Al for credit
assessment in banks. Journal of Risk and Financial Management. 2022 Nov 28; 15(12):556.
Nesvijevskaia A, Ouillade S, Guilmin P, Zucker JD. The accuracy versus interpretability
trade-off in fraud detection model. Data & Policy. 2021 Jan; 3:e12.

Heng YS, Subramanian P. A systematic review of machine learning and explainable
artificial intelligence (XAI) in credit risk modelling. InProceedings of the future
technologies conference 2022 Oct 13 (pp. 596-614). Cham: Springer International
Publishing.

Vijayanand D, Smrithy GS. Explainable Al-enhanced ensemble learning for financial fraud
detection in mobile money transactions. Intelligent Decision Technologies. 2025 Jan;
19(1):52-67.

Islam MM, Sohag A, Hasan M, Islam MK, Sultan MN. Xai-driven model explainability
and prediction of p2p bank loan default network. Ininternational Conference on Big Data,
loT and Machine Learning 2023 Sep 6 (pp. 109-121). Singapore: Springer Nature
Singapore.

Atef M, Ouf S, Seoud W, Gabr MI. A novel approach using explainable prediction of
default risk in peer-to-peer lending based on machine learning models. Neural Computing
and Applications. 2025 Sep;37(26):21783-803.

Serengil SI, Imece S, Tosun UG, Buyukbas EB, Koroglu B. A comparative study of
machine learning approaches for non-performing loan prediction with explainability.
International Journal of Machine Learning and Computing. 2022 Sep; 12(5):1102-10.

. Dennis K, Caroline B, Nansamba B, Jjingo D, Marvin G. Explainable Deep Ensemble
Published in International Journal of

ultidisciplinary Sciences and Arts Available At:
ps://jurnal.itscience.org/index.php/ijmdsal/article

/view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

[23].

[24].

[25].

[26].

[27].

[28].

[29].

[30].

[31].

[32].

Page |15

Learning for Improved Credit Default Prediction. InProceedings of the 2024 Sixteenth
International Conference on Contemporary Computing 2024 Aug 8 (pp. 256-270).

Dube L, Verster T. Interpretability of the random forest model under class imbalance. Data
Sci. Finance Econ. 2024; 4:446-68.

Nalule D, Edekebon E, Nagwovuma M, Jjingo D, Marvin G. Explainable Deep Learning
Approaches to Credit Risk Evaluation. InProceedings of the 2024 Sixteenth International
Conference on Contemporary Computing 2024 Aug 8 (pp. 198-206).

Muksalmina M, Syahyana A, Hidayatullah F, Idroes GM, Noviandy TR. Credit Card Fraud
Detection Through Explainable Artificial Intelligence for Managerial Oversight. Indatu
Journal of Management and Accounting. 2025 Jun 8; 3(1):17-28.

Rafi MA, Shaboj SI, Miah MK, Rasul I, Islam MR, Ahmed A. Explainable Al for Credit
Risk Assessment: A Data-Driven Approach to Transparent Lending Decisions. Journal of
Economics, Finance and Accounting Studies. 2024 Feb 19; 6(1):108-18.

Gonaygunta H, Maturi MH, Yadulla AR, Ravindran RK, De La Cruz E, Nadella GS,
Meduri K. Utilizing Explainable Al in Financial Risk Assessment: Enhancing User
Empowerment through Interpretable Credit Scoring Models. In2025 Systems and
Information Engineering Design Symposium (SIEDS) 2025 May 2 (pp. 444-449). IEEE.
Lin L, Wang Y. SHAP Stability in Credit Risk Management: A Case Study in Credit Card
Default Model. arXiv preprint arXiv:2508.01851. 2025 Aug 3.

Talaat FM, Medhat T, Shaban WM. Precise fraud detection and risk management with
explainable artificial intelligence. Neural Computing and Applications. 2025 Jun 26:1-31.’
Chang V, Xu QA, Akinloye SH, Benson V, Hall K. Prediction of bank credit worthiness
through credit risk analysis: an explainable machine learning study. Annals of Operations
Research. 2024 Jul 8:1-25.

Kadyan JS, Sharma M, Kadyan S, Gupta S, Hamid NK, Bala BK. Explainable Al with
Capsule Networks for Credit Risk Assessment in Financial Systems. In2025 International
Conference on Next Generation Information System Engineering (NGISE) 2025 Mar 28
(Vol. 1, pp. 1-6). IEEE.

Gadde N, Mohapatra A, Tallapragada D, Mody K, Vijay N, Gottumukhala A. Explainable

Published in International Journal of

Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ijmdsa/article

/view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

Page | 16

Al for dynamic ensemble models in high-stakes decision-making. International Journal of
Science and Research Archive. 2024; 13:1170-6.

[33]. Byun J, Lee J, Lee H, Son B. Balancing explainability and privacy in bank failure
prediction: a differentially private glass-box approach. IEEE Access. 2024 Dec 30.

[34]. Arora AS, Yachamaneni T, Kotadiya U. Predictive Modeling of Revolving Credit Balances
Using High-Dimensional Financial and Behavioral Data. International Journal of Al,
BigData, Computational and Management Studies. 2023 Mar 30; 4(1):98-107.

[35]. Mathew DE, Ebem DU, lkegwu AC, Ukeoma PE, Dibiaezue NF. Recent emerging
techniques in explainable artificial intelligence to enhance the interpretable and
understanding of Al models for human. Neural Processing Letters. 2025 Feb 7; 57(1):16.

[36]. Biswas J, Tabfimuzzaman M, Mridha AA, Afroz T, Samin AT. Interpretable credit card
fraud detection using deep learning leveraging XAl (Doctoral dissertation, Brac
University).

[37]. Schmitt M. Explainable automated machine learning for credit decisions: enhancing
human artificial intelligence collaboration in financial engineering. arXiv preprint
arXiv:2402.03806. 2024 Feb 6.

[38]. Amirineni S. Enhancing Predictive Analytics in Business Intelligence through Explainable
Al: A Case Study in Financial Products. Journal of Artificial Intelligence General Science
(JAIGS) ISSN: 3006-4023. 2024 Nov 9; 6(1):258-88.

Published in International Journal of
Multidisciplinary Sciences and Arts Available At:
https://jurnal.itscience.org/index.php/ipmdsal/article
[view/6900



https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900
https://jurnal.itscience.org/index.php/ijmdsa/article/view/6900

